

    
      
          
            
  
Welcome to Etaler’s documentation!

Etaler in an high-performance implementation of Numenta’s HTM algorithms in C++.
It is diesigned to be used in real world applications and research projects.

Etaler provides:


	HTM algorithms with modern API


	A minimal cross-platform (CPU, GPU, etc..) Tensor implementation




Etaler requires a modern C++ compiler supporting C++17. The following C++ compilers are supported


	On Windows, Visual C++2019 or better


	On Unix systems, GCC 8.2 or a recent version of clang






Licensing

Etaler is licensed under BSD 3-Clause License. So use it freely!

Be aware that Numenta holds the rights to HTM related patents. And only allows free (as “free beers” free) use of their patents for non-commercial purpose. If you are using Etaler commercially; please contact Numenta for licensing.
(tl;dr Etaler is free for any purpose. But HTM is not for commercial use.)
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Building with Visual Studio 2019

This is a step by step instruction detailing a proven way to build Etaler with Visual Studio 2019.


Install dependencies


	Install CMake [https://cmake.org]


	Install Git Bash [https://gitforwindows.org]


	Using a Git Bash terminal, perform the following commands:




cd Etaler/3rdparty
git clone https://github.com/imneme/pcg-cpp.git
git clone https://github.com/USCiLab/cereal.git






	Download the latest Intel TBB zip file.


	Extract it into C:\Program Files\Intel\TBB


	Update PATH to include C:\Program Files\Intel\TBB\bin\intel64\vc14


	Setup TBBROOT environment variable to point to C:\Program Files\Intel\TBB




To compile the tests you need to:


	Download standalone catch.hpp [https://github.com/catchorg/Catch2/releases/download/v2.8.0/catch.hpp] into the Etaler/tests directory.




If you intend to use Etaler with a GPU:


	Install an OpenCL SDK appropriate for your GPU (e.g. NVidia CUDA SDK).


	Download Khronos cl.hpp [https://www.khronos.org/registry/OpenCL/api/2.1/cl.hpp] into Etaler/3rdparty/CL directory.






CMake

The CMake application is used to generate the project and solution files for MSVC.

Set the “Where is the source code:” text box to point to the root of your cloned Etaler repository. And set the “Where to build the binaries:” text box to point to a build subdirectory off of your Etaler repositories.

For example:


	Source: C:/Github/Etaler


	Binaries: C:/Github/Etaler/build




Press the Configure button and choose the “Visual Studio 16 2019” generator. Finally press the Generate button.

Visual Studio 2019 can then be used to load the Etaler/build/Project.sln solution file, and build the library, tests and examples.

By default the solution builds a dynamic linked Etaler library. Therefore, the Etaler/build/Etaler/Release (or Debug) directory needs to be in your PATH. Or the Configuration Properties -> Debugging -> Environment entry can use “PATH=%PATH%;C:/Github/Etaler/build/Etaler/Release”.





          

      

      

    

  

    
      
          
            
  
Building on OS X

This is a step by step instruction detailing on a proven way to build Etaler on OS X


Install dependencies

brew install tbb cereal cmake







Install catch2

If you want to runs tests

git clone https://github.com/catchorg/catch2
cd catch2
mkdir build && cd build
cmake ..
make -j4
sudo make install







Get the OpenCL C++ wrapper

If you want OpenCL support. Download and install the offical OpenCL C++ wrapper

sudo wget https://www.khronos.org/registry/OpenCL/api/2.1/cl.hpp -P /System/Library/Frameworks/OpenCL.framework/Headers/







Build Etaler

git clone https://github.com/Etaler/Etaler --recursive
cd Etaler
mkdir build && cd build
cmake ..
make -j4





Please add -DETALER_BUILD_TESTS=off to cmake if you don’t want to build the tests or don’t have catch2 installed.
Add -DETALER_ENABLE_OPENCL=on for OpenCL support.
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Building on Linux

Building Etaler on Linux should be easy as it is mainly developed on Linux.


Using Docker

Etaler’s repo ships with a Docerfile in the .devcontainer directory. You can copy the file into the docker folder and utilize docker for an easy build.

cd Etaler/docker
cp ../.devcontainer/Dockerfile .
# Build the library
docker -D build   --tag etaler:latest .
# Run the container
docker run --rm -it -e DISPLAY=:0 --cap-add=SYS_PTRACE --mount source=etaler-volume,target=/home etaler:latest







Building locally

If you are like me - want to use the library locally on the system and/or want to deploy it to an embedded system, Docker may not be an option for you. No worries, building locally is also very easy.

Here I show how to setup your system. You’ll need to adapt the code if you are not using Arch Linux.


Installing dependency

sudo pacman -S gcc cmake catch2 cereal intel-tbb opencl-headers







Clone and build

git clone https://github.com/Etaler/Etaler --recursive
cd Etaler
mkdir build && cd build
cmake ..
make -j4








Using the AUR

Etaler is avaliable on AUR as etaler-git [https://aur.archlinux.org/packages/etaler-git/]. Use a AUR helper like yay and it will sort out the dependencies for you.

yay etaler-git
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  With a lack of writing ablilty. The introduction will be a clone of PyTorch’s introduction document. This is also a good chance to see how well Etaler is doing at it’s tensor operators.


A quick introduction to Etaler

At Etaler’s core are Tensors. They are generalized matrix in more then 2 dimentions; or called N-Dimentional Arrays in some places. We’ll see how they are used in-depth later. Now, let’s look what we could do with tensors

// Etaler.hpp packs most of the core headers together
#include <Etaler/Etaler.hpp>
#include <Etaler/Algorithms/SpatialPooler.hpp>
#include <Etaler/Encoders/Scalar.hpp>
using namespace et;

#include <iostream>
using namespace std;






Creating Tensors

Tensors can be created from pointers holding the data and an appropriate shape.

int d[] = {1, 2, 3, 4, 5, 6, 7, 8};
Tensor v = Tensor({8}, d);
cout << v << endl;

// Create a matrix
Tensor m = Tensor({2, 4}, d);
cout << m << endl;

// Create a 2x2x2 tensor
Tensor t = Tensor({2, 2, 2}, d);
cout << t << endl;





Out

{ 1, 2, 3, 4, 5, 6, 7, 8}
{{ 1, 2, 3, 4}, 
 { 5, 6, 7, 8}}
{{{ 1, 2}, 
  { 3, 4}}, 

 {{ 5, 6}, 
  { 7, 8}}}





Just like a vector is a list of scalars, a matrix is a list of vectors. A 3D Tensor is a list of matrices. Think it like so: indexing into a 3D Tensor gives you a matrix, indexing into a matrix gives you a vector and indexing. into a vector gives you a scalar,

Just for clearifcation. When I say “Tensor” I ment a et::Tensor object.

// Index into v wii give you a scalar
cout << v[{0}] << endl;

// Scalars are special as you can convert them into native C++ types
cout << v[{0}].item<int>() << endl;

// Indexing a matrix gives you a vector
cout << m[{0}] << endl;

// And indexing into a 3d Tensor to get a matrix
cout << t[{0}] << endl;





Out

{ 1}
1
{ 1, 2, 3, 4}
{{ 1, 2}, 
 { 3, 4}}





You can also create tensors of other types. The default, as you can see, is whatever the pointer is point to. To create floating-point Tensors, just point to an floating point array then call Tensor().

You can also create a tensor of zeros with an supplied shape using zeros()

Tensor x = zeros({3, 4, 5}, DType::Float);
cout << x << endl;





Out

{{{ 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}}, 

 {{ 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}}, 

 {{ 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}, 
  { 0, 0, 0, 0, 0}}}







Operation with Tensors

You can operate on tensors in the ways you would expect.

Tensor x = ones({3});
Tensor y = constant({3}, 7);
Tensor z = x + y;
cout << z << endl;





Out

{ 8, 8, 8}





One helpful operation that we will make use of later is concatenation.

// By default, the cat/concat/concatenate function works on the 1st axis
Tensor x_1 = zeros({2, 5});
Tensor y_1 = zeros({3, 5});
Tensor z_1 = cat({x_1, y_1});
cout << z_1 << endl;

// Concatenate columns:
Tensor x_2 = zeros({2, 3});
Tensor y_2 = zeros({2, 5});
Tensor z_2 = cat({x_2, y_2}, 1);
cout << z_2 << endl;





Out

{{ 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0}}
{{ 0, 0, 0, 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0, 0, 0, 0}}







Reshaping Tensors

Use the reshape method to reshape a tensor. Unlike PyTorch using view() to reshapce tensots. view in Etaler works like the one in xtensor [https://github.com/xtensor-stack/xtensor]; it performs indexing.

Tensor x = zeros({2, 3, 4});
cout << x << endl;
cout << x.reshape({2, 12}) << endl;  // Reshape to 2 rows, 12 columns





Out

{{{ 0, 0, 0, 0}, 
  { 0, 0, 0, 0}, 
  { 0, 0, 0, 0}}, 

 {{ 0, 0, 0, 0}, 
  { 0, 0, 0, 0}, 
  { 0, 0, 0, 0}}}
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}







HTM Algorithms

HTM algorithms, like what the name indicates. Implements HTM related algorithms. They are the sole perpose why Etaler exists.

Without getting too deep. Typically the first thing we do in HTM is encode values into SDRs. SDRs are sparse binary tensors. i.e. Elements in the tensor are either 1 or 0 and most of them are 0s.

Tensor x = encoder::scalar(/*value=*/0.3,
	/*min_val=*/0.f,
	/*max_val=*/5.f);
cout << x << endl;





Out

{ 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}





Spatial Pooler [https://numenta.com/neuroscience-research/research-publications/papers/htm-spatial-pooler-neocortical-algorithm-for-online-sparse-distributed-coding/] is a very commonly used layer in HTM. Trough an unsurpervised learning process, it can extract patterns from SDRs fed to it.

SpatialPooler sp(/*input_shape=*/{32}, /*output_shape=*/{64});
// Run (i.e. inference) the SpatialPooler.
Tensor y = sp.compute(x);
cout << y.cast(DType::Bool) << endl;
// If you want the SpatialPooler to learn from the data. Call the `learn()` function.
sp.learn(x, y);





Out

{ 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}





After traning, you might want like to save the Spatial Pooler’s weights for use in the future.

auto states = sp.states();
save(states, "sp.cereal");

//Alternativelly save as JSON
save(states, "sp.json");
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Introduction to HTM Algorithms

Hierarchical Temporal Memory is a biologically possible machine learning algorithm developed by Numenta [https://numenta.com/]. Biological possiblity means the algorithms has to simulate (or approximate) behaivour and limitations of real neurons. i.e. Neurons has to speak binary (spikes [https://en.wikipedia.org/wiki/Biological_neuron_model]) and there’s no global learning (no backpropergation [https://en.wikipedia.org/wiki/Backpropagation]). In HTM Theory, this means HTM operates on Sparse Distributed Representation [https://en.wikipedia.org/wiki/Sparse_distributed_memory] (SDR, basically binary tensors) and every layer operates indipendently.

This document will introduce HTM algorithms as a black box. It is highly reommended to watch the HTM School [https://www.youtube.com/watch?v=XMB0ri4qgwc&list=PL3yXMgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9] series on YouTube for deeper understanding of the material.


Encoders

Encoders are how data interact with HTM. As mentioned earlier, HTM can only accepts binary as input and only generates binary output. So a method of converting data into SDRs is required. There are several encoders avaliable by default.




	Encoder
	Usage





	scalar
	scalar of a defined range



	category
	encodes category



	gridCell1d
	arbitrary scalar



	gridCell2d
	arbitrary 2D vector




All encoders (for now) are plan function calls in the et::encoder namespace. And every of them returns a tensor of Booleans; you can inspect the result of any encoder by printing the returned value.

auto sdr = encoder::gridCell1d(0.5);
cout << sdr << endl;





Out

{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
 0, 0, 0, 0, 0, 0}





The rule of thumb for an encoders is that for any given pair of value encoded. The farther the values are, the less 1 bits in the resulting SDR overlaps. The short ROOT [https://root.cern.ch] script demonstrates this property (for a grid cell [https://en.wikipedia.org/wiki/Grid_cell] encoder).

root [] g = TGraph(100);
root [] x = encoder::gridCell1d(0.5);
root [] for(int i=0;i<100;i++) {
root []     float p = (float)i/100;
root []     auto s = encoder::gridCell1d(p);
root []     int overlap = sum(x && s).item<int>();
root []     g.SetPoint(i+1, p, overlap);
root [] }
root [] g.Draw();
root [] g.SetTitle("# of overlapping bits");





Out

[image: _images/gc1d_overlap.svg]number_of_overlapping_bits


Extending encodings

Unless in a very simple case, you might have multiple fields or non-standard types in your data. In such case, you might need to come up with your own encoder or use multiple of them together. Having your own encoder is easy - the only requirment of an encoder is a) returns a fixed length binary tensor b) the tensor have to be sparse and c) values futher apart should have less and less 1 bits overlapping. a and b are requirments. Failing to fulill will lead to a program crash. While c is nice to have but not having it will only causing bad learning results or not learning at all.

For example. We can come up with an basic scalar encoder that encodes values from 0~1.

Tensor dumb_encoder(float v)
{
    intmax_t start = v*(64-4);
    // Create a tensor of length 64.
    // Then set 4 of the bits to 1
    Tensor sdr = zeros({64}, DType::Bool);
    sdr[{range(start, start+4)}] = 1;
    return sdr;
}

cout << dumb_encoder(0.1) << endl;





Out

{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}





It is quite hard to build a robust encoder for complex data and in most cases the data are not related to each other. So pratically we would apply encoding to each field then concatenate all SDRs together.

Tensor complex_encoder(float v1, float v2, float v3)
{
        Tensor sdr1 = encoder::scalar(v1);
        Tensor sdr2 = encoder::scalar(v2);
        Tensor sdr3 = encoder::scalar(v3);
        return concat({sdr1, sdr2, sdr3});
}

cout << complex_encoder(0.1, 0.2, 0.3) << endl;





Out

{ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}








Spatial Pooler

Spatial Pooler [https://numenta.com/neuroscience-research/research-publications/papers/htm-spatial-pooler-neocortical-algorithm-for-online-sparse-distributed-coding/] is a dimention reduction/clustering algorithm. As a black box, a Spatial Pooler learns the associations between bits (learning which groups of bits frequently becomes a 1 together) and merges them together. The process removes reducdent information within the SDR and enforces a stable density (number of 1 bits in the SDR). Improving Temporal Memory’s performance.

auto sp = SpatialPooler(/*input_shape=*/{256}, /*output_shape=*/{64});
auto y = encoder::gridCell1d(0.5);
cout << sp.compute(y) << endl;





Out

{ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1}





An untrained Spatial Pooler is pretty much useless; knowing nothing about the input SDR and only guess the relation among bits. We need to feed data to it and allow it to learn the relations itself - by feeding the results back into the learn method.

auto sp = SpatialPooler(/*input_shape=*/{256}, /*output_shape=*/{64});
for(const auto& sample : dataset) {
    auto x = encode_data(sample);
    auto y = sp.compute(x);

    sp.learn(x, y); // Ask the SP the learn!
}





Like any machine learning algorithm, the Spatial Pooler have multiple hyper-parameters. The important ones include:

sp.setGlobalDensity(density); // The density of the generated SDR
sp.setBoostingFactor(factor); // Allows under-performing cells to activate
sp.setActiveThreshold(thr);   // How much activity can lead to cell activation

sp.setPermanenceInc(inc);     // These are the learning rates
sp.setPermanenceDec(dec);     // For both reward and punish







Temporal Memory

As the name implied, Temporal Memory [https://numenta.com/neuroscience-research/research-publications/papers/why-neurons-have-thousands-of-synapses-theory-of-sequence-memory-in-neocortex/] is a sequence memory. It learns the relations of bits at time t and t+1. For a high level view, given a Temporal Memory layer is trained on the sequence A-B-C-D. Then asking what is after A, the TM layer will respond B.

// Some setup is requied for a TM
// In this example, the input shape is {256} and there are 16 cells per column
// last_active and last_pred are the stats of the TM
// This is annoning and will be fixed in a future release
Tensor last_active = zeros({256, 16}, DType::Bool);
Tensor last_pred = zeros({256, 16}, DType::Bool);

auto tm = TemporalMemory(/*input_shape*/{256}, /*cells_per_column=*/16);
auto [pred, active] = tm.compute(encoder::gridCell1d(0.5), last_pred);
cout << pred << endl;





Out

{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 ....
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}





The Temporal Memory has some very good properties. First, a Temporal Memory will respond “nothing” when it has no idea what is going on (unlike neural networks, they return at least something when met with unknown). Like in this case, we asked a Temporal Memory that has been trained on nothing to predict what’s after 0.5. The layer responded with a zero tensor of shape {input_shape, cells_per_column}. Indicating nothing.

In most applications. We don’t care about what’s happning within each column but weather a column contains a cell that is a 1. This can be extracted with a sum() call.

// Continuing from the previous block
auto pred_sdr = sum(pred, 1, DType::Bool);
cout << pred_sdr << endl;





Out

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0}





Traning a Temporal Memory involved basically the same process as the Spatial Pooler. But with slightly more steps.

// Continuing from the previous block
for(const auto& sample : dataset) {
    auto x = encode_data(sample);
    auto [pred, active] = tm.compute(x, last_active);
    // You can you the predictions here
    ...
    // Now update the states
    tm.learn(active, last_state);
    tie(last_pred, last_active) = pair(pred, active);
}





Idealy, unless your input data is very simple. We recommend to pass the encoded through a SpatialPooler to reduce useless information.

for(...) {
    auto x = encode_data(...);
    auto y = sp.compute(x); // Use the SP!

    auto [pred, active] = tm.compute(y, last_active);
    ...
}





After traning, the TM should be able to predict what is possible in the next time step based on current input and the state. A Temporal Memory layer can gracefully deal with ambiguous situaction. When trained on the sequence A-B-C-B-C-D then asking what’s after C without a context(past state), the TM will respond both B and D.


Detection anomaly

One of HTM’s main use is to perform anomaly detection. The method is stright forward. Given a well trained Spatial Pooler, Temporal Memory and a cyclic signal. The only cause for the TM to not predicting well must be an anomaly in the signal. The TM’s property ties in very well with the application. A TM will resolve ambiguous states by predicting everything and predicts nothing when it don’t know.

We can compute the anomaly score using the TM’s prediction from the last time step and the actual input from the current time step.

for(...) {
    auto x = encode_data(...);
    auto [pred, active] = tm.compute(y, last_active);

    float anomaly_score = anomaly(sum(last_pred, 1, DType::Bool), x);
    ...
}





Do note that detecting anomaly at t=0 will always give you an anomaly score of 1 due to having no past history to rely on.




Classifers

It’s good to have the ability to predict the future. But sometimes it’s hard to make sense of the predictios in the SDR form. Etaler provides a biologically possible classifer to categorize results back into human readable information.

Note: The API of classifers are pron to change. And more classifers will be added.

auto clf = SDRClassifer(/*input_shape=*/{256}, /*num_class=*/10);

//Add SDRs to the classifer
for(int i=0;i<10;i++)
    clf.addPattern(encoder::gridCell1d(i/10.f), i);

cout << "The value 0.8 is close to "
    << clf.compute(encoder::gridCell1d(0.8))/10.f << endl;





Out

The value 0.8 is close to 0.8
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Tensor

Tensors are how Etaler stores data. They are a minimal NDArray implementation. Thus it is currently lacking some features. But they should be enough for HTM.

For now content type of int, bool, half and float are supported.


Creating a Tensor

It is easy to create a Tensor

Tensor t = Tensor(/*shape=*/{4,4}, DType::Float);





At this point, the contents in the Tensor hasn’t been initalized. To initalize, call Tensor() with a pointer pointing to a plan array. The Tensor object will copy all of the provided data and use them for initalization.

float data[4] = {3,2,1,6};
Tensor t = Tensor(/*shape=*/{4}, DType::Float, data);







Copy

Tensors holds a shared_ptr object that points to a actual implementation provided by the backend. Thus, copying via operator = and the copy constructor results in a shallow copy.

Tensor t = Tensor({4,4});
Tensor q = t; //q and t points to the same internal object





Use the copy() member function to perform a deep copy.

Tensor t = Tensor({4,4});
Tensor q = t.copy();







Accessing the raw data held by the Tensor

If the implementaion allows. You can get a raw pointer pointing to where the Tensor stores it’s data. Otherwise a nullptr is returned.

Tensor t = Tensor({4,4}, DType::Int32);
int32_t* ptr = (int32_t*)t.data();







Copy data from Tensor to a std::vector

No matter where or how a Tensor stores it’s data. the toHost() method copies everything into a std::vector.

Tensor t = Tensor({4,4}, DType::Int32);
std::vector<int32_t> res = t.toHost<int32_t>();





Be aware that due to std::vector<bool> is a specialization for space and the internal data cannot be accessed by a pointer, use uint8_t instead.

Tensor t = Tensor({4,4}, DType::Bool);
std::vector<uint8_t> res = t.toHost<uint8_t>();
//std::vector<bool> res = t.toHost<bool>();//This will not compile





Also toHost checks that the type you are stroing to is the same the Tensor holds. If mismatch, an exception is thrown.

Tensor t = Tensor({4,4}, DType::Float);
std::vector<int32_t> res = t.toHost<int32_t>(); //Throws







Indexing

Etaler supports basic indexing using Torch’s syntax

Tensor t = ones({4,4});
Tensor q = t.view({2, 2}); //A vew to the value of what is at position 2,2
std::cout << q << std::endl; // Prints {1}





Also ranged indexing

Tensor t = ones({4,4});
Tensor q = t.view({range(2), range(2)}); //A view to the value of what is at position 2,2
std::cout << q << std::endl;
// Prints
// {{1, 1},
//  {1, 1}}





The all() function allows you to specsify the entire axis.

Tensor t = ones({4,4});
Tensor q = t.view({all(), all()});//The entire 4x4 matrix







Writing data trough a view

And you can write back to the source Tensor using assign()

Tensor t = ones({4,4});
Tensor q = t.view({2,2});
q.assign(zeros({2,2}));
std::cout << t << '\n';
//Prints
// {{ 0, 0, 1, 1},
//  { 0, 0, 1, 1},
//  { 1, 1, 1, 1},
//  { 1, 1, 1, 1}}





The Python style method works too tanks to C++ magic

Tensor t = ones({4,4});
t.view({2,2}) = zeros({2,2});
std::cout << t << '\n';
//Prints
// {{ 0, 0, 1, 1},
//  { 0, 0, 1, 1},
//  { 1, 1, 1, 1},
//  { 1, 1, 1, 1}}





But assigning to an instance of view doesn’t work. Jusk like how things are in Python.

Tensor t = ones({4,4});
Tensor q = t.view({2,2});
q = ones({2,2});
std::cout << t << '\n';
//Prints
// {{ 1, 1, 1, 1},
//  { 1, 1, 1, 1},
//  { 1, 1, 1, 1},
//  { 1, 1, 1, 1}}






Technical note

Numpy uses the __set_key__ operator to determine when to write data. If the operator is not called. Python itself handles object reference assignment and thus data is not written.
However thers is no such  mechanism  in C++. So Etaler distingishs when to copy the reference it holds and when to write data using operatpr= ()& and operator= ()&&. When writing to an l-valued Tensor, the reference is copied. While assigning to an r-value, actual data is copied trough the view.

Which works in most cases, but there are caveats.

Tensor foo(const Tensor& x)
{
        return x;
}

foo(x) = ones({...}); //Oops. Data is written to x even tho it is passed as const!








Add, subtract, multiply, etc…

Common Tensor operations are supported. Incluing +, -, *, /, exp, log(ln), negation, Tensor comparsions, and more! Use them like how you would in Python. The comparsion operators alowys return a Tensor to bools. The others return a Tensor of what you get in plan C/C++ code.

Tensor a = ones({4,4});
Tensor b = a + a;







Brodcasting

Etaler supports PyTorch’s brodcasting rules without the legacy rules. Any pair of Tensors are bordcastable if the following rules holds true.

(Stolen from PyTorch’s document.)


	Each tensor has at least one dimension.


	When iterating over the dimension sizes, starting at the trailing dimension, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.




For example:

Tensor a, b;

//The trailing dimensions match
a = ones({2, 2});
b = ones({   2});
std::cout << (a+b).shape() << std::endl;
// {2, 2}

//But not necessary
a = ones({6, 4});
b = ones({1});
std::cout << (a+b).shape() << std::endl;
// {6, 4}

//This fails
a = ones({2, 3});
b = ones({   2});
std::cout << (a+b).shape() << std::endl;
//Fails





Unlike PyTorch and NumPy, Etaler does not support the lagecy brodcasting rule. It doesn’t allow certain tensors with
different shapes but have the same amount of elements to brodcast together.

//This would get you a warning in PyTorch and works in NumPy.
//But not in Etaler
a = ones({4})
b = ones({4, 1})
std::cout << (a+b).shape() << std::endl;
//Fails







Copy Tensor from backend to backend

If you have multiple backends (ex: one on the CPU and one for GPU), you can easily transfer data between the backends.

auto gpu = make_shared<OpenCLBackend>();
Tensor t = zeros({4,4}, DType::Float);
Tensor q = t.to(gpu);







Catch-yas

Using the Tensor() constructor to create a Tensor of 1 dimentions in facts creates a Tensor of the given value.

Tensor t = Tensor({4});
std::cout << t << std::endl;
//Prints {4} instead of {x, x, x, x}
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Python bindings


PyEtaler

PyEtaler [https://github.com/etaler/pyetaler] is the offical binding for Etaler. We try to keep the Python API as close to the C++ one as possible. So you can use the C++ document as the Python document. With that said, some functions are changed in the binding to make it more Pythonic.

>>> from etaler import et
>>> et.ones([2, 2])
{{ 1, 1}, 
 { 1, 1}}







ROOT

If cppyy is not avaliable to you for any reason. You can use Etaler in Python via ROOT [https://root.cern.ch] and it’s automatic binding generation feature.

# Load ROOT
import ROOT
gROOT = ROOT.gROOT
gSystem = ROOT.gSystem

# Include Etaler headers
gROOT.ProcessLine("""
#include <Etaler/Etaler.hpp>
#include <Etaler/Algorithms/SpatialPooler.hpp>
#include <Etaler/Algorithms/TemporalMemory.hpp>
#include <Etaler/Algorithms/Anomaly.hpp>
#include <Etaler/Encoders/GridCell1d.hpp>
""")
# Load the library
gSystem.Load("/usr/local/lib/libEtaler.so");

# make a handy namespace alias
et = ROOT.et





Then you can call Etaler functions from Python.

s = et.Shape()
[s.push_back(v) for v in [2, 2]] #HACK: ROOT doesn't support initalizer lists.
t = et.ones(s)
print(t)
"""
{{ 1, 1}, 
 { 1, 1}}
"""
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Using with cling/ROOT

cling [https://root.cern.ch/cling] is a JITed C++ interpter and ROOT [https://root.cern.ch/] is a data analyisis framework by CERN built upon cling (since version 6). Thay are a valuable tool that provides a interactive C++ shell when using Etaler/doing experiments. This file documents how to use Etaler within clang/ROOT.


General solutions

After installing Etaler to system and launching cling or ROOT. You can load Etaler via the #pragma cling load command.

By default cling only looks in /usr/lib. So you’ll need to specisify the full path if the library is not located there.

> cling -std=c++17

****************** CLING ******************
* Type C++ code and press enter to run it *
*             Type .q to exit             *
*******************************************
[cling]$ #pragma cling load("/usr/local/lib/libEtaler.so")
[cling]$ #include <Etaler/Etaler.hpp>





Or you’ll have to specsify an apporate search path.

> cling -std=c++17 -L /usr/local/lib
[cling]$ #pragma cling load("Etaler")
[cling]$ #include <Etaler/Etaler.hpp>





Otherwise, loading the library can be simplifed:

> cling -std=c++17
[cling]$ #pragma cling load("Etaler")
[cling]$ #include <Etaler/Etaler.hpp>





The same solution works with ROOT too! By default ROOT is compiled with C++11 only. You’ll need to compile your own version of ROOT with C++17 enabled (by using cmake -Dcxx17=ON). Or you’ll need to download a version with C++17 enabled. Like the one in Arch Linux’s repo [https://www.archlinux.org/packages/community/x86_64/root/]

> root
   ------------------------------------------------------------
  | Welcome to ROOT 6.16/00                  https://root.cern |
  |                               (c) 1995-2018, The ROOT Team |
  | Built for linuxx8664gcc on Jan 23 2019, 09:06:13           |
  | From tags/v6-16-00@v6-16-00                                |
  | Try '.help', '.demo', '.license', '.credits', '.quit'/'.q' |
   ------------------------------------------------------------

root [0] #pragma cling load("/usr/local/lib/libEtaler.so")
root [1] #include <Etaler/Etaler.hpp>





The same -L flag can be applyed to ROOT.

> root -L /usr/local/lib
root [0] #pragma cling load("Etaler")
root [1] #include <Etaler/Etaler.hpp>







For cling

Cling accepts the .L command. (ROOT also has a .L coomand, but it is for a different function)

> cling -std=c++17 -L /usr/local/lib
[cling]$ .L Etaler
[cling]$ #include <Etaler/Etaler.hpp>







For ROOT

If you want load the library programmatically. You can load Etaler via gSystem. You’ll have to specisify the full path using this method.

> root
root [0] gSystem->Load("/usr/local/lib/libEtaler.so");
root [1] #include <Etaler/Etaler.hpp>





Or use a macro to load Etaler conveniently

// /usr/share/root/macros/load_etaler.C
#include <Etaler/Etaler.hpp>
#include <Etaler/Algorithms/SpatialPooler.hpp>
#include <Etaler/Algorithms/TemporalMemory.hpp>
#include <Etaler/Encoders/Scalar.hpp>
#include <Etaler/Encoders/GridCell1d.hpp>
#include <Etaler/Encoders/GridCell2d.hpp> // Add or remove headers as you want
#pragma cling load("/usr/local/lib/libEtaler.so") // Repalce this with your path to Etaler
using namespace et;

void load_etaler(){}





Then call the macro in ROOT to load all of Etaler.

> root
root [0] .x load_etaler.C
root [1] // Etaler is fully loaded







Using Etaler under an interactive C++ shell

After loading the library. You can use the library as you would normally. (And ROOT imports the std namespace by default.)

root [2] using namespace et;
root [3] Tensor t = ones({3,3});
root [4] cout << t << endl;
{{ 1, 1, 1},
 { 1, 1, 1},
 { 1, 1, 1}}
root [5]
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GUI

This file documents the steps to add GUI features to Etaler running under container.


	On the host run “xhost local:root” to enable X11 connection on localhost from the container


	Build and run the tm_visualize example
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Contribution

There are may different ways to help!


Using Etaler

The easiest and the most direct way to help is by using the library. If you find a bug or a missing feature, please open an issue and let us know how we can improve. If you have built a cool project usign Etaler. Share it!



Developing Etaler

If you want to develop the library it self, you are very welcomed! We are excited to see a new PR pop up.


Deisgn guidlines


	Don’t care about x86-32 (Any 32bit architecture in fact). But no intentional breaks


	Use DOD. OOP is slow and evil


	Backend calls should be async-able, allow parallelization as much as possible


	Seprate the compute backend from the API frontend


	Make the design scalable


	See no reason to run a layer across multiple GPUs. Just keep layers running on a single device


	Keep the API high level


	Braking the archicture is OK


	Serealizable objects should reture a StateDict (std::map<std::string, std::any>) object for serialization


	Non intrusive serialization


	Reseves a StateDict object to deserealize






	Language binding should be in another repo


	Don’t care about swarmming


	follow the KISS (Keep it Simple Stupid) principle


	Configuration files are evil (Looking at you NuPIC)


	Avoid raw pointers. They are evil




If you are adding a dependency to the library. Please discuss it in a relevant thread or make a new issue. For now, we are actively avoiding Boost [https://www.boost.org/] and try to stick to STL as much as possible. Using Boost might lead to trouble later on. But we might decide use Boost later on.
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Backend Design

Backends are how Etaler supports computing on different device/processors. They perform the actual computing and memory managment. Currently there are 2 backends avaliable.


	CPUBackend


	OpenCLBackend




They should cover more than 99% of the use cases. When needed, other backends can be added to support new devices.


Total front-end/back-end seperation

Etaler seperated it’s frontends and backends. i.e. Calling Tensor::Tensor() does not immidatelly create a Tensor object. Instead it calls a backend to create the object for you. Depending on which backend is called. The resulting Tensor can live on CPU’s main memory or the GPU’s VRAM. (Omiting a lot of details.)

This applies to all Tensor operations and HTM algorithms. All of them are provided by a backend and the Tensor object only calculates what backend-indipendent parameters are needed to generate correct result. Allowing a very simple way to have a Tensor running anywhere.



Backend APIs

By design (might change in the future). All backend-exposed compute API are expecting thair own Tensors being passed in . View of tensors are not expected (besides realize() and assign(). They handle views). If anython besides an actual Tensor is passed in, the backend aborts.

The frontend APIs of common functions like sum, cast automatically handles realizing. But HTM specific APIs don’t.



Backend name

You can get the backend’s name usging the name() method.

std::cout << backend->name() << "\n";//prints: CPU







Default Backend

Etaler provices a convient function defaultBackend() that returns a usable backend.
When no backends are provied to algorithms/objects the default backend is used.

By default defaultBackend() returns a CPUBackend. You can which backend is used by calling the setDefaultBackend() function.

Like so:

setDefaultBackend(std::make_shared<OpenCLBackend>());







Using multiple backends

Using multiple backends should be easy. Just initalize multiple backends and tensors on them! You can even have different threads controlling different backends for maxium performance. The backends are not thread-safe tho. You’ll have to handle that yourself.



Tensors and views, how do they work

From a technical point. Each backend implements it own XXXBuffer (ex. CPUBuffer) class, storing whatever is needed. When the backend being requested to create a tensor (the createTensor method called). The backend returns a shared_ptr pointing to XXXBuffer, which is then wrapped by a TensorImpl. When the reference counter drops to 0, the releaseTensor method is called automatically (Also all TensorImpl holds a shared_ptr to the backend, so you don’t need to worry about the backend being destructed before all tensors being destructed).

When creating a view. Like Numpy and PyTorch’s implementation we modifies the offset and stride of the tensor.

But not all backend APIs support handling strides. (Espcally HTM algorithms and those modifies data in-place). If a strided Tensor is sent to a API that doesn’t support strides. Backend aborts.
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Developer Notes

This file documents some facts about the codebase that might be useful for it’s developers and users.


	Error.hpp provides a few ways to check if the program is runnign correctly.


	et_assert works like C asserts. But it is not dieabled in a release build.


	Aborts the entire program when condition check fails.


	The least overhead


	Use it in core/lowlevel code






	et_check throws an EtError exception.


	More overhead


	Recoverable






	ASSERT is C assert but doesn’t cause unused variable warning.


	et::enableTraceOnException(bool) sets if a stack trace is generated while creating a EtError exception


	On by default. Can be disabled in runtime in production.


	Very useful in debugging and interactive coding


	Stack trace appends to the error message






	Address Sanitizer is your good friend to debug buffer overflows if you are on Linux or OS X.


	But it might cause Etaler not able to detect OpenCL platforms.


	Memory Sanitizer will work with OpenCL. But is too sensitive.






	Nvidia’s OpenCL implementation although very optimized, has piles upon piles of problems.


	Use POCL w/ CUDA backend for debugging. POCL is a lot slower, but very stable.


	Or use Intel/AMD’s OpenCL SDK


	Mesa’s clover OpenCL SDK [https://cgit.freedesktop.org/mesa/mesa/log/?qt=grep&q=clover] works, but quite slow.









Programing style


	Use LF line ending, CRLF is evil


	Respect PyTorch/NumPy’s naming


	Respect C++STL’s naming


	Unless violating the 2 previous rules


	Variables use snake_case


	Functions use camalCase


	Types use PascalCase


	Macros are ALL_CAPS


	Unless the macro is intended to be used as a type or function. Then use the respective case


	Lambda functions/callable class instances use snake_case
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About the OpenCL backend

This is a brief document/note about the OpenCL backend.


OpenCL standard version

Currently the backend only requires and uses the features provided by OpenCL 1.2. But OpenCL 2.0 support is planned.



Program caching

The OpenCL backend caches programs automatoically. If a program cast already exists in the kernel manager. Asking it to compile another version of cast does nothing. Set the force_override flag to force a compilation and override.



Local Memory

Due to how HTM work - being very memory bangwidth hungry and the input SDR is relativelly small. The OpenCL backend tries to stores data in the GPU’s local(on-chip) memory so more bandwidth can be used for fetching synapse.

However this also poses limitations. Since the input Tensor is copied into the local memory. The size of the input Tensor cannot exceed the size of local memory (48KB on NVIDIA cards and 64KB on AMD cards). If larger inputs are encountered, Etaler simply switches to a version not using local memory.
Also some GPUs - all of them are mobile GPUs -  don’t have such local memory and is emulated using global memroy. Etaler uses kernels without local memory optimization.



Global inhibition

Currently finding the top-k values are done by a quick counting based scanning methoud. Performed by a single work group and stores it’s counters in Local Memory. This is fast and accurate as long as the size of the input array is small (the max value is less then the size of the counter). Thus another algorithm might be needed for big arrays.



OpenCL kenrel distribution

The OpenCL backend searchs for the kernels it needs in the following paths: ./kernels/, ../kernels/, /usr/local/share/Etaler/kernels and /usr/share/Etaler/kernels/. If the file is found, then it is read and cached in memory. If not, an exception is raised.
The kernel files are installed when installing the library.

If you have your kernels stored at a different location. You can set the ETALER_KERNEL_PATH enviroment variable to make your path avavliable.



JIT compiling views

The OpenCL backend generates the OpenCL kernels to copy/write to Tensor views at runtime. Thus copying from a view might be slow. It the problem turns out to be too bug a problem. It will be cchanged.



NVIDIA’s OpenCL implementation

NVIDIA’s OpenCL implementation can crash without notifing the user. (kerenl can crash without abort, generating error code at the wrong places, etc…). Use POCL’s CUDA backend for varification that the kernel is running correctly.



program name mangling

Since the OpenCL backend tracks programes using a key. Name mangling (in Etaler’s case, appending the hash of the compiler argumnents to the end of the key) is required to support multiple versions of the same program (with different -D defines, etc…).



RPi VC4CL Support

VC4CL is not suported for now. The limitation of VC4CL only supporting up to 12 PE per work group is not taken into account in the OpenCL backend. (And VC4 uses global memory to emulate local memory, it is going to be slow),



Altera AOCL / Xiinx SDAccel support

FPGA based OpenCL although interaseting, are not supported now due to the lack of a API callable compiler.
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